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Abstract of the work

In this project, a multiple model method using neural network has been developed. The

multiple model method is a technique where  the uncertainty is not modeled in only one model.

First, multiple models are designed for the uncertainty. Second, each model is  scored or

estimated using statistical methods. Based on the score  of models, the most suitable model is

selected.

Recently, the researches on the multiple model methods have focused on the dynamic multiple

model methods that combine the multiple model method and Markov jump process (Markov

chain). If the estimated model changes on time and the jump of system obeys the Markov jump

process, the dynamic multiple model methods are very useful.

However, the weak point of the dynamic multiple model method is  that the Markov transition

probability matrix is not generally  known. The Markov transition probability matrix defines the

transition probability that a model at the previous time jumps to  a model at the current time. In

real applications, it is difficult  to know the Markov probability transition matrix. As a result,

without the correct Markov transition probability matrix, the dynamic multiple method can not

achieve the best performance.

In this project, a new multiple model method without Markov  jump process is developed. The

neural network is substituted for Markov jump process with unknown transition probability

matrix. Neural network is an artificial intelligence technique for search, classification and

recognition based on the learning process. From the data that has implicitly the model transition,

the neural network is trained for finding the information matched with the Markov transition

probability matrix. Moreover, the developed  method is verified using representative simulations.
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1. Introduction

In target tracking, the state of moving object is inferred based  on the sensor measurements. In

the target tracking processes, two uncertainty factors are considered. One uncertainty factor is in

the motion of the target. Mathematically, we can describe the motion of the target using the

dynamic equation in the state space. For one dynamic equation, one movement can be modeled.

Practically, it is impossible for a target to move based on a fixed dynamic equation. In this case,

the real system that controls the movement of the target cannot realize the motions  that are

exactly modeled by the given mathematical dynamic  equation. This is called the structural

uncertainty [1]. The other uncertainty factor exists in the sensor system. All sensor systems have

the instrumental errors. In other words, all the measurements are  contaminated. Therefore, in

target tracking, the unknown state of target is  inferred based on the contaminated sensor

measurements.

The estimation is to extract the information that we want to know from the data that are known

and available. We can say the tracking process contains the state estimation of the target using

sensor measurements. A popular tool for state estimation is the Kalman filter. In the Kalman

filter, two uncertainty factors are  modeled using the stochastic systems [2]. The stochastic model

consists of the plant and measurement models. In  the plant model, we can find the plant noise

vector that describes  the structural uncertainty. In the measurement model, there is  the

measurement noise vector that degrades the accuracy of measurements. If the plant and the

measurement noise vector are  suitably chosen, the Kalman filter estimates the state of the  target

reducing two uncertainty factors- the structural and the measurement uncertainty.

When the target maneuvers, the Kalman filter cannot optimally  estimate the state of the target.

When a target maneuvers, the dynamic equation used before maneuver is not in effect for state

estimation. In other words, the structural uncertainty for the maneuvering movement cannot be

covered by the plant noise. As a  result, the wrong plant noise degrades the accuracy of the state

estimation. One method for a maneuvering target is the multiple  model (MM) methods, which

seem to be the most promising [3].
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In the MM methods, we prepare a set of stochastic systems that are  describing various

movements of the target and estimate the state of the target based on the results of the candidates.

One stochastic system becomes one model. The main issue is how to combine the results of

models in order to find the state estimate. One branch of MM researches is the dynamic(or

switching) MM [1][4]. In the dynamic MM, the model change in time axis is assumed to be the

Markov process. The dynamic MM has been developed intensively and the  representative results

are as follows: generalized pseudo-Bayesian  (GPB) [1][4], interactive multiple model (IMM)

[1][4] and variable structure interactive multiple model (VSIMM) [1][5]. The VSIMM method is

the latest.

However, it is difficult to design the Markov transition  probability matrix (MTPM) in the

dynamic MM method. In early  works, the MTPM was determined by  designer [4]. There is no

general rule for designing the MTPM and the MTPM is determined based on the designer's

experience or trial and error. As a recent research on VSIMM, Doucet and Ristic developed a

recursive MTPM estimation method [6]. However, consequently, the Markov jump property

disappears in their work.

In this project, a new dynamic MM algorithm without Markov jump process is developed. The

neural network is adopted instead of the Markov jump process.

The combination of target tracking and neural network has been  studied. One issue is the

neural network in the multiple target tracking. The aim is to use the Hopfield neural network for

the Data association [7][8][9][10]. Other issue is to use neural network for fuzzy logic  [11].

Moreover, neural network is used for compensating the error due to the maneuver of target. The

Cho et. al proposed the adaptive Fuzzy tracker with error compensation using the neural network

[12]. However, there is no research on combination of neural network and system model

estimation in the dynamic MM methods.

This report is organized as follows. In Section II, the target tracking and Kalman filter are

introduced. In Section III, the system model estimation in the dynamic MM with Markov process

is summarized. In addition, the problem due to Markov process in the dynamic MM is presented.
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In Section IV, the MM with neural network is proposed as a solution for the problem due to

Markov process. The proposed method is developed based on the latest dynamic MM, VSIMM.

In Section V, the proposed method is verified through  2 dimensional target tracking simulations.

We compare the result  of the proposed method and a VSIMM method. Finally, Section VI is

devoted to conclusion.
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2. Target Tracking and Kalman Filter

In this section, target tracking is explained and the uncertainty factors in target tracking are

reminded. From the view point of the uncertainty in target tracking, Kalman filter is briefly

reviewed.

2.1 Target Tracking

The process of inferring the state of an moving object (a target) based on the sensor

measurements is called ``Target Tracking". In  air-surveillance systems, it is important to know

the position and the velocity of the aircraft of the interest. In order to infer the state of the target

aircraft, we should prepare sensors, such as radar, which give the data on the state of the target

aircraft. Based on the data from sensor, we determine the state of the target. Moreover, we use a

priori information of target  movement such as the maximum acceleration of target. We can

mathematically design the dynamics of a known target. In summary, target tracking is a kind of

data processing based on a priori information and the sensor measurement from the target.

Figure 1 shows a target tracking system.

Figure 1 A Target Tracking System
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The difficulty of target tracking arises from the uncertainty in  the sensor data and the future

movement of the target. In the next  subsections, the uncertainty factors are explained.

2.1.1 Uncertainty in the target movement

Generally, it is very difficult to exactly know the future  movement of the target. If the current

state is exactly known and the target does not change its movement, we can predict the future

motion of the target. In this case, we can mathematically express  the motion of the target using

the dynamic equations without uncertainty terms in the state space [2]. In practice, however, the

exact state of the target is not known and  we can not guarantee that the target keep its movement.

In practice, we can only predict the state of the target with errors  due to the incomplete

information.

2.1.2 Uncertainty in the sensor measurements

It is impossible to eliminate noise from the measurements of practical sensor systems. The

measurements from sensor are the  only information that has the current status of the target.

However, all the sensor systems are not free from the noise. Therefore, the error can not be

eliminated and we should try to  reduce the effect of the noise in the measurements.

2.2. Kalman Filter

The Kalman filter is the popular estimation tool that considers  the two uncertainty factors. In the

Kalman filter, the structural and the measurement uncertainty factors are treated in the plant  and

the measurement models, respectively. In this section, the Kalman filter is explained from the

view point of the uncertainty  factors in target tracking.

2.2.1 The System Model
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The Kalman filter is built based on the system model composed of two models: the plant

(dynamic) model and the measurement  (observation) model. For the linear discrete model with

Guassian noise, the system model can be formulated by:

( ) ( ) ( ) ( ) ( )kvkGkxkFkx +=+1                                               (2.1)

 ( ) ( ) ( ) ( )kwkxkHky +=                                                      (2.2)

where ( ) nkx ℜ∈  is the state vector, ( ) mkx ℜ∈  is  the observation vector, nℜ  is an n -

dimensional Euclidean space, ( )kv  and ( )kw  are the zero-mean white Gaussian uncorrelated

sequences, ( ) ( )( )kQNkv ,0~  and ( ) ( )( )kRNkw ,0~ , and k  is the scan index. The initial state

( ) ( ) ( )( )0,0~0 PxNx  is assumed to be uncorrelated with ( )kv  and ( )kw . In the plant model, the

movement of the target is defined and in the measurement model, the process of measuring the

information of the target movement is determined.

In the equations (2.1) and (2.2), the noise vectors ( )kv  and ( )kw  are the uncertainty factors as

described in the previous section. The equation (2.1) without noise ( )kv  is the dynamic equation

that describes a motion of the target without external input. The noise term ( )kv  is interpreted as

the unknown variation of the state. By defining the ( )kv , we can statistically model the

uncertainty in the plant model. For example, the ( )kv  is assumed to be a scalar zero-mean unit-

variance Gaussian, then the variation of the state is predicted to be in the interval ( )3,3−  with a

confidence of about 99%. The equation (2.2) without the measurement noise ( )kw  is the formula

that transforms the state of the target to the sensor measurement. In the real sensor systems, the

sensor measurement is contaminated due to various  factors such as the weather, the hostile

environment and the limit  of the sensor systems. The contamination of the measurements are

statistically modeled as the noise ( )kw . In other words, the accuracy of the measurement

depends on the measurement noise ( )kw .

2.2.2 Kalman Filter Update Process
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Based on the system model, the Kalman filter estimates the state  of the target based on the

following equations [2],[4]:

( ) ( ) ( ) ( ) ( )00|0ˆ,1|1ˆ1|ˆ xxkkxkFkkx =−−=−                                 (2.3)

             ( ) ( ) ( ) ( ) ( ) ( ) ( )11111|111| −−−+−−−−=− kGkQkGkFkkPkFkkP TT            (2.4)

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 1
1|1|

−
+−−= kRkHkkPkHkHkkPkK TT                        (2.5)

      ( ) ( ) ( ) ( ) ( ) ( )[ ]1ˆ1|ˆˆ −+−+−= kkxkHkykKkkxkx                              (2.6)

( ) ( )[ ] ( ) ( ) ( )00|0,1|| PPkkPkKIkkP n =−−=                               (2.7)

where ( ) ( ) ( ){ }kxkxkkP ~,~cov| = , ( ) ( ) ( )kkxkxkx |ˆ~ −= , and nI  is the nn×  unit matrix.

In the equation (2.3), the state of target  at scan k  is predicted based on the plant model with the

information until scan k-1 . After the state prediction, the error covariance of the state is predicted

based on the state prediction and the plant model, which is given in the equation  (2.4). In the

next step, the Kalman gain is calculated based on the state and the error covariance predictions,

which is given in the equation (2.5). Finally, we obtain the state and the error covariance

estimations in the equation (2.6) and the equation (2.7), respectively.

In Kalman filter update process, let's analyze the role of Kalman gain. In the equation (2.4), the

predicted error covariance is a function of previous error covariance and the plant noise

variance ( )kQ . As the ( )kQ  increases, the Kalman gain increases. In the equation (2.5), the

Kalman gain is calculated. As the error covariance ( )1| −kkP  increases, the Kalman gain

increases  but as the measurement noise covariance increases, the Kalman gain  decreases. As a

result, Kalman gain increases when the plant noise increases and the measurement noise variance

decreases. In the equation (2.6), the state estimation is  obtained by addition of the state

estimation and Kalman gain multiplied by the measurement innovation that is defined as the

difference between the current measurement ( )ky  and the measurement prediction,

( ) ( )1|ˆ −kkxkH . As the Kalman gain  increases, the measurement innovation have more

influence on the state estimate. The physical meaning of the measurement innovation is the error
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between the current measurement and the measurement prediction based on the previous state

prediction. When the Kalman gain increases, we add more error to the state  estimation and the

updated measurement becomes dominant in current state estimation and the effect of the state

prediction decreases. Remind that the Kalman gain increases when the plant noise variance

increases and the measurement noise variance decreases. The meaning of big plant noise

variance is that the plant model has big uncertainty. Intuitively, the state prediction is not  reliable

when the plant model has big uncertainty. Therefore, when  the big Kalman gain reflects the big

uncertainty in the plant model and the effect of the state prediction based on the plant model

decreases. Moreover, as the measurement noise variance is smaller and smaller, the sensor

measurement is more and more accurate. Intuitively, it is desirable that the updated measurement

has a strong influent on the current state estimate when the measurement  is accurate. Since the

smaller measurement noise variance leads  the bigger Kalman gain, the updated measurement has

more influence on the current state estimate.

2.2.3 Problems in the Kalman Filter for the Maneuvering Target

When a target maneuvers, the state estimate of Kalman filter becomes erroneous. When the

target changes its motion (dynamics) over the limit of the process noise, we call it `maneuver'.

When a target maneuvers, the plant model should be changed. If we can not know the correct

plant model and the incorrect plant model is used  in the Kalman filter update, the state estimate

is predicted to be erroneous.

In the next section, the MM methods are introduced as a solution for the maneuvering target

tracking.
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3. The Multiple Model Methods

In this section, the MM method is introduced for the maneuvering  target tracking. First the main

idea of the MM methods is  explained. Next, the idea of the MM is expanded to the MM with

Markov jump process and the VSIMM method. In addition, the weak point of the MM with the

Markov jump process is explained at the  end of this section.

3.1 The Main Idea of the MM Method

The key in the maneuvering target tracking is how to infer the  plant model for the maneuvering

target. As explained in the previous chapter, it is difficult to know the plant model when the

target maneuvers. With the incorrect plant model, the state estimate is predicted to be erroneous.

In the MM methods, we prepare a set of the system models where the various movements of the

target are formulated. During the target tracking, each system model gives its own estimate.

After obtaining all estimate from all the system models, we score the system models and

combine the state estimates based on the scores.

We design n discrete system models. Let im  denote i-th system model in the total system model

set, { }imM =  for i=1,…,n. The ( )kmi  means a system model im  is at scan k . The score of

( )kmi  is defined as ( )kiβ . The local state estimate based on ( )kmi  is defined as  ( )kxiˆ . The

overall state estimate is given by:

( ) ( ) ( )∑
=

=
n

i
ii kxkkx

1

ˆˆ β                                                          (3.1)

( ) 1
1

=∑
=

n

i
i kβ                                                                 (3.2)

The MM is the process of calculating the scores, ( )k1β ,…, ( )knβ  and the state estimate of the

system models, ( )kx1ˆ ,…, ( )kxnˆ . In this  project, the process of scoring system models is called

system model estimation.
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We can classify the MM methods based on the interaction among the system models [1],[4]. If

there is no interaction among the system models, we call it the static MM, otherwise the dynamic

MM. The mainstream of the MM researches is the dynamic MM methods such as IMM [1],[4]

and VSIMM [1],[5].

3.2The Static MM Methods

In the static MM [4], the score of a system model is given by:

( ) ( ){ }k
ii ykmPk |=β                                                              (3.3)

where ky  is the set of the accumulated measurements until scan k , 1y ,…, ky .

In the system model estimation of the static MM, the score of a model at scan k , ( )kmi  is not

effected by the other models  at scan k-1 , but the only itself at scan k-1 , ( )1−kmi . This means no

interactions in the system models. The equation (3.3) [4] is rewritten as

( ) ( ){ } ( ) ( )( ) ( )
( ) ( )( )∑

=

−

−

−

−−
== n

j
i

k

ii
k

k
ii

kmykyp

kkmykyp
ykmPk

1

1

1

1,|

11,|
|

β
β                           (3.4)

where ( )⋅p  denotes probability density function. The term ( ) ( )( )1,| 1 −− kmykyp i
k  is the

likelihood of the current  measurement, ( )ky . In the equation (3.4), the denominator is a

normalization of the likelihood. As a result, the score of the system model, ( )km i , is effected by

the likelihood of the current measurement and the past own status, ( )1−kiβ .

3.3 The Dynamic MM Methods
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In the dynamic MM, there are interactions among the system models. This interaction is built up

based on the Markov jump process. In  this subsection, the Markov jump process is briefly

explained and the dynamic MM methods are introduced.

3.3.1 Markov Jump Process

In the Markov process [4,6], the current state is known from the most recent past state that we

can know. The Markov process is defined by:

( ) ( ){ } ( ) ( ){ }11 |,| −− =≤ kkkk tqtqPtttqtqP                                             (3.5)

where ( )ktq  is the state at time kt .

The Markov jump process (Markov chain) is a Markov process having  the finite number of

states, nqq ,,1 Κ . A Markov jump  process is characterized based on the state transition

probabilities given by:

( ) ( ){ }1|, −= tqtqP jiqq ji
π                                                         (3.6)

and the Markov transition probability matrix(MTPM) is given by:

{ }
ji qq ,π=Π .                                                                   (3.7)

The change of states on time is modeled by using the MTPM in the Markov jump process.

3.3.2 The Dynamic MM methods

In the dynamic MM methods, the interaction among the system models  are built based on the

Markov jump process. In this case, we  consider the system model in the dynamic MM as the

state in Markov jump process. Moreover, the transition from one system model to the other

model is defined based on the MTPM.
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In the system model estimation of the dynamic MM method, the history (or sequence) of the

system model transition should be considered. Let ( ) ( ) ( ) ( ) ( ){ }MkmmkmmkI ∈= ,,1|,,1 ΚΚ  be

a sequence of the system models until scan k . Assume that ( ) ( ) ( ){ }1,, −= kIkmkI
jji mimm  and

( ) ( ){ }2,1 −=− kImkI jm j
 for 2>k . Define ( )kji ,β  as a new score of the system model transition

from ( )1−km j  to ( )kmi  [4], which is  give by:

( )
( ) ( )

( ){ }
( ) ( ){ }

( ) ( )( ) ( ){ }
( ) ( )( ) ( ) ( ){ }
( ) ( )( ) ( ) ( ){ }

( )
( )

( ) ( )( ) ( ) ( ){ } ( )

( ) ( )( ) ( ) ( ) ( ){ } ( )

( ) ( )( ) ( ) ( ){ } ( )11|,|
1

12,1|,|
1

11|,|
1

1,1|,|
1

|1,,|
1

|,|
1

,|

|

1
,

1
,

,
1

,
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where c is a normalization constant. Since the system model transition is defined based on the

Markov jump process, the sequence ( )2−kI  in ( ) ( ) ( ){ }2,1| −− kIkmkmP ji  can be ignored.

Using Markov jump process, the ( )kji,β  is rewritten by:

( ) ( ) ( )( ) ( )1,|
1

,
1

,, −= − kykIkyp
c

k jji
k

mmji ji
βπβ .                                  (3.9)
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In the equation (3.9), it is clear that the system model ( )1−km j  have influence on the system

model ( )kmi . The score ( )kji,β  is a function of the likelihood of the updated measurement,

( ) ( )( )1
, ,| −k
mm ykIkyp

ji
, the Markov state transition  probability, ji ,π , and the previous score of a

system model, ( )1−kjβ . The Markov jump process scores the  effect from the previous system

model to the current. As a result, the previous system model effects the current system model

estimation through Markov jump process.

Finally, the score of the dynamic MM methods are given by:

∑
=

=
n

j
jii

1
,ββ .                                                                          (3.10)

3.4 Variable Structure Interactive Multiple Model Method

In this  subsection, the recent and advanced dynamic MM method, VSIMM is introduced. The

VSIMM and the IMM are compared and the system model estimation in VSIMM is explained.

3.4.1 The Difference of IMM and VSIMM}

The VSIMM has been developed in order to solve a dilemma in the IMM [1,5]. In the IMM

methods, as the number of models increases, the confliction among models causes increasing

estimation error. In the equation  (3.9), the score of the system model at scan k  is the sum of the

weighted scores of all the system models. However, the true system model is not expressed in

terms  of all the system models but the limited number of the system models. As a result, the

system models except for the limited number of models that express the true system model

become the error terms. However, when we use small number of models, tracking performance

will be degraded. If a target maneuvers and its  movements cannot be covered with the small size

of mode set, the state estimation will be erroneous.
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In order to solve dilemma in the IMM, the VSIMM selects the system models used for the state

estimation [1,5]. In this  case, we add the system model selection method to the state  estimation

of the IMM. If all system models are selected for the system model estimation, the VSIMM and

IMM are same [1,5].

3.4.2 System Model Estimation in VSIMM

Let ( ) Mks ⊂  denote a system model set, whose elements  are the selected system models for the

state estimation, at scan k  and ( ) ( ) ( ){ }ksskS ,,1 Κ=  is the selected system model set sequence

until scan k . Let ( )ksm  denote a system model in the selected system model set, ( )ks . Let

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }kskmsmkmmkH ∈∈= ,,11|,,1 ΚΚ  be a sequence of the selected system model.

Define ( ) ( ) ( ) ( ) ( ){ }kskmkHkmkH imimm kji
∈−= |1,,  as a sequence of the selected system model

with ( )kmi  and ( )1−km j , where ( ) ( ) ( ) ( ){ }11|1),2(1 −∈−−−=− kskmkmkHkH jjm j
.

The ( )kji,β  for the VSIMM is give by:
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where c is a normalization constant. Since the system model transition is defined based on the

Markov jump process, the sequence ( )2−kH  in ( ) ( ) ( ){ }2,1| −− kHkmkmP ji  can be ignored.

Using Markov jump process, the ( )kji,β  is rewritten by:

( ) ( ) ( )( ) ( )1,|
1

,
1

,, −= − kykHkyp
c

k jji
k

mmji ji
βπβ  .                                (3.12)

Finally, the score of the VSIMM methods are given by:

∑∑

∑

= =

== n

i

n

j
ji

n

j
ji

i

1 1
,

1
,

β

β
β                                                                  (3.13)

There is an important assumption in VSIMM: the admissible property  [1,5]. In the VSIMM

methods, the system model sequence, ( )kH  and the system model set sequence, ( )kS  are

updated at each scan. In this update, only the admissible system models and system model sets

are selected. Consider the admissible system model in the variable  structure MM. Assume that

the system model set sequence, ( )kS , is an admissible system model set sequence. If ( )kS  is an

admissible system model set sequence, then for every ( )tsm , we can find at least one ( )1−tsm  that

satisfies  ( ) ( ) 01, ≠−tstsπ  for t=1,…,k . Assume the system model sequence, ( )kH , should also be an

admissible system model sequence. If ( ) ( ) ( ) ( ) ( ){ }kmtmtmmkH ,,,1,,1 ΚΚ −=  is an admissible

system model sequence, then ( ) ( ) 01, ≠−tstsπ  for t=2,…,k .

3.4.3 The System Model Selection Methods

Three system model selection methods presented in  [1,5,14]: Active Digraph (AD), Digraph

Switching (DS), and Adaptive Grid  (AG).
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In the AD and DS methods, we select a set of system models. In the AD methods, the system

models are chosen based on their likelihood  values. The predefined number of system models are

selected and used in the state estimation. In the DS methods, the geometry of the selected system

model set is predefined. We compare the overall likelihood values of the predefined system

model sets and choose the system model sets for the state estimation.

In contrast to the AD and DS methods, the AG method is built based  on the parameter of the

system model. The output of the AG methods  is to find the key parameter that separating the

system models. In the AG methods, if the key parameter is changed, we think the system model

is changed. As a result, the system model set is  updated when the key parameters of the system

models are changed.

3.4.4 Three Parameters for the System Model Estimation in VSIMM

In the equations (3.9), three parameters are required for calculation of the score. The three score

is explained based from the practical view point.

The first parameter is the first factor of the right side of the equation (3.9),

( ) ( )( )1
, ,| −k
mm ykIkyp

ji
, which is the information from the updated measurement. The first

parameter is the likelihood of the current measurement, which is calculated based on the current

measurement and the prediction of measurement based on the  previous system model

information. If the measurement and the measurement prediction become increasingly similar,

the first parameter value also increases.

The second parameter is the second factor of the equation  (3.9), 
ji mm ,π , which is  defined in the

MTPM. This probability value indicates the tendency  of the change of the target movement. If a

system model moves based on a system model, ( )1−km j , then the system model for target

movement at scan k , is predicted to be ( )kmi  with probability of the second score. If the second

score 
ji mm ,π  is near 1, the system model of the target should almost change from ( )1−km j  to

( )kmi .
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The third parameter is the third factor of the equation (3.9), ( )1−kjβ , which are the past score.

In Markov jump process, we should know the most recent information in order to know the

current information. The third parameter is the most recent information in Markov jump  process.

If one of the three parameters is not correct, the state estimation is erroneous.
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4. Multiple Model Method with Neural Network}

In this section, a problem in the dynamic MM is explained and  analyzed. Based on the problem,

a solution is proposed. The solution is built based on the neural network.

4.1 System Model Jump Delay

4.1.1 Background

In the maneuvering target tracking applications, it is difficult  to know the exact system model

transition information - in this  case, the second parameter value is not known. In order to obtain

the exact system model transition information, the designer should  know the MTPM for the

specific maneuvering motion in the application. However, the maneuvering motion only depends

on the target. The target decides everything related to maneuvering  motion such as when it

starts/stops maneuvering, how rapidly it  maneuvers, how frequently it maneuvers, and so on. In

this case, the designer can not know the probability that the target changes  its own motion from

one system model to the other system model. As  a result, it is difficult to know the MTPM in the

real application. However, in the VSIMM, the MTPM is set by the  designer's value, which is

defined by the designer before target tracking. In this section, the problem in the dynamic MM is

explained and analyzed.

4.1.2 Models for System Model Transition in the Dynamic MM

Assume that a system model set M is prepared. All elements of M are connected with system

model transition probability. Every  system model is connected at least one model except itself

with non-zero system model transition probability.

Definition 1: Direct Distance from jm to im , ji ≠
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The direct distance of two system model from jm  to im  is  defined as ( ) 0, =ji mmdd  for

0, =
ji mmπ  and ( ) 1, =ji mmdd  for 0, ≠

ji mmπ .

Definition 2: Shortest Transition Path from jm to im , ji ≠

The shortest path form from jm  to im , ( )ji mmJ ,  is defined as the system model jump sequence

with the smallest number of jumps from jm  to im . A system model 1m  can only jump to a

system model 2m when 0
21 , ≠mmπ . The ( )ji mmJ ,  includes the stating system model im  and the

destination system model im .

Definition 3: The Length of Shortest Transition Path from jm  to im , ji ≠

The length of the shortest path ( )ji mmJ , , ( )ji mmL , , defines as l-1, where l is the number of

elements in ( )ji mmJ , .

Definition 4: Indirect Distance from jm  to im , ji ≠

The indirect distance of two system model, ( )ji mmid , , is defined as ( ) ( )( )jiji mmJLmmid ,, = .

Example 1

The Figure 2 shows an example of system model set for a dynamic MM. The MTPM for The

figure 2 is given by
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First, check the direct distance, shortest path, and indirect distance of 1) A from B 2) from A to

D. First, the direct distance is given by ( ) 1, =BAdd  and ( ) 0, =DAdd . Second, the shortest path

is given by ( ) { }BABAJ ,, = $ and ( ) { }DCBAADJ ,,,, = . Finally, the indirect distance is given

by ( ) ( ) 1,, == ABJBAid  and ( ) ( ) 3,, == ADJADid .

Figure 2 A System Model Set with Transition Probability

4.1.3 A Problem in the Dynamic MM

In the dynamic MM methods, the system model transition is  restricted due to the MTPM. In the

IMM, 0, =
ji mmπ  means that the direct system transition from jm  to im  is  impossible. In the

VSIMM, 0, =
ji mmπ  means that im  is not admissible system model of jm - im  is excluded from

the candidate system model set for the state estimation.

Theorem: If a target changes its dynamic model and the indirect distance from previous to the

current system model of the target is greater than 1, the system model estimation cannot give the

true current system model for estimation.
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Proof: Assume that the system model jump from ( )1−km j  to ( )kmi  when a target maneuvers.

The score equations (3.4) and (3.9) have the term 
ji mm ,π , the Markov transition probability. If

( ) 1, >ji mmid , then the 0, =
ji mmπ . As a result, the score of ( )kmi  is zero and the current real

system model im  can not be selected.

The indirect distance from a system model to a system model is  defined based on the Markov

transition probability. If the designer does not know the exact value of the Markov transition

probability, then the tracking can not be optimal. However, it is  impossible for designer to know

the exact value of the Markov transition probability.

Example 2

Consider the system model set in the Figure  2. A target is moving with system model A and

suddenly changes its system model to D. The direct system model jump from D to A is

impossible due to 0, =DAπ .

4.1.4 System Model Jump Delay

The unknown MTPM causes the error in the state estimate. With wrong second parameter, the

score of the system model is not correct. Now the situation after selecting wrong second

parameter is explained. Although the system model estimation is not correct  due to the wrong

MTPM at the beginning of maneuvering, the system model estimation is being improved more

and more as time goes on. Assume that the target starts maneuvering and the system model of the

target is changed from ( )1−km j  to ( )kmi . In this  case, the first parameter value of ( )kmi  should

be the largest. However, the MPTM is not well-designed for the system model jump from

( )1−km j  to ( )kmi  such that 0, =
ji mmπ  or 0, ≈

ji mmπ . In this case, since the small 
ji mm ,π

decreases the second parameter, the score is predicted to be small. Next, consider the score of

( )1−km j . The first parameter value is small, since the true system model is changed from jm  to

im . The small first sub-score makes the score of im  to be small. As a result, it is predicted that
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the system model set that includes neither ( )kmi  nor ( )km j , are selected for the state estimation.

Assume that the system model set that includes ( )kml  is selected for the state estimation. In this

case, the system model estimation is not correct at the beginning of maneuvering, since ( )kml  is

selected instead of the true system model ( )kmi . However, if 
jijl mmmm ,, ππ >>  and the first

parameter is kept largest, then the score of ( )1+kmi  increases. As time goes on, the true system

model, im  is selected for the state estimation. In this case, the system model estimator needs

additional scans to find the true system model. In this  dissertation, it is call the system model

jump delay.

Example 3

Consider the system model set in the Figure  2. When a target changes its system model from A to

D, it is impossible to select D in the dynamic MM. However, it is possible that the system model

changes  through the shortest path, ( ) { }DCBAADJ ,,,, = . At the next scan after the

maneuvering, it is possible for the system model B to be selected. In this case, ( ) 3, =ADid  and

more scans are needed. Next scan, the system model B can be selected. After the system model B

is selected, the next model to jump is the system model C. At the next scan, the system model D

is predicted to be selected, which is the true system model for state estimation. As a result, at

least, three scans are required for searching the true  target. In other words, more than three scans

are required.

4.1.5 A Solution: Neural Networks

In the dynamic MM, the MPTM is selected by designer. Although the  MPTM is not generally

known, the designer determined its value based on the designer's experience or trial and error. As

a result, the tracking error increases due to the inexact MTPM. Therefore, it is required to

eliminate Markov jump process in the dynamic MM. In order to reduce the system model jump

delay, the Markov jump process is eliminated.
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Instead of Markov jump process, neural network gives the system model transition information.

An alternative method is needed for the MTPM. The MTPM has the system model transition

information. As a result, the alternative method should have a function that extracts the system

model transition information. The neural network is a method for searching recognition and

classification. The suitable system model for the current situation is found through the searching

function of neural network.

In this project, a new system model estimation method using neural network is proposed instead

of (3.9) and (3.12).

4.2 Neural Network in the Dynamic MM

In this subsection, the process of adopting neural network into the dynamic MM is proposed.

First, the role of the neural network is  explained. Second, the neural network is designed for the

dynamic MM. Third, the neural network training is explained. Lastly, the advantages in adopting

neural network are presented by comparing the VSIMM.

4.2.1 Assumptions- Prior Knowledge on the Target Movements

Before designing the system model estimation method, we make two  assumptions on target

movements.

The first assumption is that we know the limit of target movements. The target decides

everything on its own movement but cannot make a movement that is over its movement limit.

For an extreme example, The airplane cannot suddenly stop and keep its  position.

The second assumption is that we know the representative moving  patterns of target. For

example, a car on the cross has the four possible moving patterns- 1) turn left, 2) turn right, 3) go

straight, and 4) stay.
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The first assumption is reasonable. If we do not know the limit of the target movements, we can

not design the system models for the  unlimited movements. The system models are defined

based on the unknown target movement parameters such as the maximum acceleration and the

maximum turn rate.

In order for the second assumption, the representative trajectories of the target are required. A

trajectory of the target implies the moving patterns. From the past movement, we can know the

movement patterns of the target.

4.2.1 Role of Neural Network

Consider the backpropagation (BP) neural network [15, 16]. The backpropagation algorithm is

for a multiple layer neural network, where a complex task can be learned [15, 16]. Since the

information of the system model transition is hidden, implicit, and complex, the backpropagation

network is chosen.

Figure 3 Backpropagation Neural Network

Consider a BP neural network with N layers. The BP network has  N weight matrices, { }iW

i=1,…,N . Each layer has a activation function, if  for i=1,…,N . Let p denote the input of the BP

network. The output of the BP network, NNq  is given by
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( )( )( )pWfWfWfq NNNNN 1121 Κ−=                                                  (4.2)

Figure 3 shows the BP network.

The objective of neural network is to find a desired output Dq  for an input p. The pair { }Dqp,  is

called training pair. Suppose that we have L training pairs, { } { }LDLD qpqp ,1,1 ,,,, Κ . The cost

function of the BP network, J is given by

( ) ( ),,,
1

,, iNNiD

L

i

T
iNNiD qqqqJ −−= ∑

=

                                                (4.3)

where iNNq ,  is the output of the BP neural network for input , ip . We determine the weight

matrices, NWW ,,1 Κ  that minimize the cost function J, which is given by

min,,1
 →

NWWJ Κ
                                                         (4.4)

This is a kind of least square estimation [17] in deterministic sense. The process of determining

the weight matrices is called neural network training. The neural network is  trained in iterative

way. The weight matrices are updated and we  calculate the error between the desired output and

the output using the updated weight matrices, NNDT qqe −= . This  process is repeated until the

stop condition of training is  satisfied. In general, there are two stop conditions. One is that Te  is

within the predefined tolerance ε , that is, ε<Te , and the other is that the number of iterations

are over the predefined maximum number of iterations.

4.2.2 Neural Network Based Dynamic MM

To reduce system model jump delay, the neural network is used instead of Markov jump process.

The equations (3.1) is rewritten as
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( ) ( ) ( )∑
=

=
n

i
iiNN kxkfkx

1
, ˆˆ                                                     (4.5)

where iNNf ,  is the score of im  that is implemented based on the neural network.

The iNNf ,  is implemented by using the neural network. In the equation (4.5), the neural network

gives the score of the system model. In the previous section, the scores of the system models are

calculated in the recursive form based on the Markov jump process.

The inputs of the iNNf ,  are the first and the third  parameters described in the subsection 3.4.4.

The first parameter is the updated  information from the new measurement, updatedI , which is not

changed due to the design of the system models. The third  parameter is the information of the

selected system models at the previous scan denoted by previousI . The score of a system model

( )kmi  at scan k  is given as

( )previousupdatediNNi IIf ,,=β .                                                          (4.6)

The cost function of the neural network for the dynamic MM, DynMMJ , is deigned as

( ) ( ) ( )
2

1
, ˆ 








−= ∑

=

n

i
iiNNDynMM kxkfkxJ .                                      (4.7)

The objective is to minimize the DynMMJ  with respect to the weight matrices of neural network,

NWW ,,1 Κ , which is given as

min,,1
 →

NWWDynMMJ Κ
.                                           (4.8)
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4.2.3 Neural Network Design

The neural net design is the process of determining the inputs, outputs of the neural network and

the structure of neural network.

In the neural network design, the system model set is the key element. In the VSIMM, three

methods for system model set grouping  was proposed [1, 5, 14] and briefly described in the

subsection 3.4.3. Three different methods  generates the different system model set deign.

In AD and DS methods, the system models are designed in discrete manner. In these cases, the

system models are defined in the discrete set. For the AD methods, the system models with

highest scores are selected. For the DS methods, the system model group with the highest score

is selected. In the DS methods, the geometry of the selected system model group is fixed and the

scores of groups are compared but in the AD methods, only the  system models with highest

scores are selected without considering the geometry of the selected system model group.

In the AG methods, the system models are defined in the continuous  space. The distance

between the neighbor system models are  variable. The spacing process is adaptively carried out

The AG methods seem more flexible than the AD and the DS methods.

The information type of the selected system model depends on the system model design.

Different types of the system models cause the different types of the neural network inputs and

outputs.

The system model set selection method described in the subsection  3.4.3 is taken into account in

designing inputs and outputs of neural network. If the AG method  is used in the system model

selection, we treat the system model in the continuous space. If the AD or DS method is used in

the system model selection, we treat the model in the discrete space.

The design methods of the inputs and the outputs of iNNf ,  are divided into two methods: model

based design and parameter based design.
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Model Based Design

The model based design is focused on not the key parameter but the system model, which is

similar to the AD and the DS methods in  VSIMM. The system models are designed in discrete

manner and the number of system models is  finite. In this case, the neural network selects the

system model for the state estimation. The input to iNNf ,  is defined by ( ){ }1,mod −= kmIp updatedel .

The output of iNNf ,  is given by ( ){ }kmel i
q β=mod .

Parameter Based Design

In the parameter based design, the output of neural network is the key parameter that separating

the system models. In this case, the  input to iNNf ,  is given by ( ){ }1, −= kIp updatedpara θ , where

( )1−kθ  is the key parameter of the selected system model at scan $k-1$. The output of iNNf ,  is

given by ( ){ }kparalq θβ= .

4.2.4 Neural Network Training

The neural network training is to find the weight matrices  of the neural network, NWW ,,1 Κ , that

minimize the equation (4.8).

Prepare the Training Trajectories

The first step of neural network training is to prepare the training trajectories. In the equation

(4.7), the squared error, ( ) ( ) ( )
2

1
,

2 ˆ 







−= ∑

=

n

i
iiNNNN kxkfkxe , is to be minimized. In the error NNe , the

true but unknown value, ( )kx , should be known. The value ( )kx  is obtained from the training

trajectories.
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For generating the training pairs, training trajectories that contains the representative moving

patterns of the target is  required. If the information in the training scenarios is not  enough to

cover the various maneuvering movements, then the state  estimation becomes erroneous.

The number of training pair should exceed the number of the total weights in the BP neural

network [18].

Simulation of Each System Model by Using the Training Scenarios

In the second step, the error NNe  for training pairs are calculated. Prepare the filter bank: one

filter is one system model. After the simulations of all filters are carried out and ( )kxiˆ  for

i=1,…,n are obtained.

Training Pair Generation

After the simulation, the training pair is extracted from simulation data. For all system models,

the NNe  can be calculated. The training pair is selected based on NNe . This  is a searching process.

The system models with small NNe  are searched and selected.

The training pair depends also on the system model design. If the AG method is used, the

training pair is described in the  continuous space. If the AD (or DS) method is used, the training

pair is described in the discrete space.

Neural Network Training

In the last step, neural network is trained based on the training pair. In general, there are two

termination conditions: Te  and the number of maximum training-iterations. The term Te  is

related to the error performance. The limit of iteration is  related to the training time. If the weight

change is small and the error Te  converges, two cases are predicted. The first case is that the

weight is fixed with global minimum of the cost function. The other case is that the weight is in
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the local minimum. In other words, although the error of the neural network train converges, the

neural network is not optimal for the cost function [18]. Therefore, in the neural network

training, both Te  and the number of maximum training iterations should be checked. The neural

network training process  is shown in Figure 4.

Consider the meaning of neural network training. In the dynamic MM with Markov jump

process, system model estimation is performed based on the Bayesian approach. The system

model probability is  recursively updated. All information except for the MTPM is easily

obtained. Although the MTPM is not available in system model estimation, the MTPM is also

predefined or estimated. However, in  the system model estimation using neural network, Markov

jump process is eliminated. This means that the additional information corresponding to the

MTPM is obtained through the neural network training. The training data reflect priori

information of the target movement to the system model estimation, instead of the MPTM.

In the neural network training process, it is the most important to design the training trajectories.

The training trajectory depends on the application. For example, the moving patterns of an

airplane and a submarine are different. For each case, we find or design the trajectory that

includes the representative movements  of the target.
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Figure 4 The Neural Network Training Process

4.2.4 Neural Network Structure

The multiple layer BP network can approximate almost any function if the enough hidden layer

is prepared [18]. Generally, however, it is difficult to give the number of hidden layers and the
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number of the neurons in the hidden layer [18]. Other neural network such as Hopfield  network

and bidirectional associative memory is known  approximately [19].

A guide line for the BP neural network structure is that the  number of parameters that is changed

during the neural network training, such as weight, should fewer than the number of training

pairs [18]. The other guide line is that that too  small number of neurons in hidden layer cannot

approximate the complex function [18]. As a result, the number of hidden layers and the number

of neurons are selected by checking the NNe .

4.2.5 Neural Network and VSIMM}

The advantage of the VSIMM methods is that the selected system models are used in the state

estimation. The proposed method is  applicable to variable structure MM methods by adding the

system model selection process. If the system models are selected based only on the scores, it is

similar to the AD method. If the system models are selected based on the system model group

whose geometry is predefined and fixed, it is similar to the DS method. If the system model is

updated with adaptive manner in the continuous  space, it is similar to the AG method.

4.3 Discussions

Consider the situation when a target is moving with a untrained  moving pattern. An attractive

property of neural network is that, for the untrained input, the neural network gives the output of

the input that is the most similar to the untrained input. Due to  this property, the neural network

is adaptive for missing and noisy data [15, 16, 19]. If the untrained moving pattern happens, the

neural net gives the system model that is the most similar in the trained patterns.
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5. Simulations and Results

In this section, two simulations are shown to verify the proposed  method.

5.1 Simulation Model

In both simulations, an object moving in 2-dimensional space is  tracked.

5.1.1 Plant and Measurement Equations

The piecewise constant white acceleration model [4] is used for the Kalman filter. The state

vector is defined as [ ]Txxxxx 2211 ,,, &&= . The measurement vector is given by [ ]Tyyy 21,= . The

system noise vector is [ ]Twww 21,=  and the measurement noise vector is [ ]Tvvv 21,= . The system

and the measurement models are given by

( ) ( ) ( )
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 and t∆  is the constant scan interval. The

measurement noise covariance matrix is given by 2IRv = , 
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5.1.2 System Model Design
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The system model is defined based on the noise variances of ( )kw1  and ( )kw2 , 2
1wσ  and 2

2wσ . The

ranges of 2
1wσ  and 2

2wσ  are given by 196,1 22
21

≤≤ ww σσ . In both simulations, the system model

( )km ji, is defined by ( ) { }jikm wwji ==≡ 22
, 21

,σσ  at scan k .

On DS VSIMM

Figure 5 System Model Space and Geometry of the Selected System Models in the DS VSIMM Simulations

In the DS VSIMM, the total system model set is defined by

{ }45,45|, −=−== bjaimM jiVSMM  for 40,,1, Κ=ba . Let N
jim ,  denote the neighbor models of

jim , . In general, the N
jim ,  are composed of 4 system models - jim ,1− , jim ,1+ , 1, −jim , and 1, +jim .

For some specific models such as jm ,1 , jm ,40 , 1,jm , and 40,jm , j=2,…,39 , there are three

neighbor models and for 1,1m , 40,1m , 1,40m , and 40,40m , there are only two neighbor models. The

system models for state estimation are determined by choosing one system model named the

center model. After the selection of the center model, neighbors  are determined based on the

location of center model.  Figure  5 shows the system model space and geometry  of the selected
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system models of the in this simulation DS VSIMM simulations. The MTPM is given by

6.0
,, , =
jiji mmπ  and jimmmm

n
jijiji

N
ji

,,,
/)1(

,,,,
ππ −= , where jin ,  is the number of neighbors  of jim , . The

system models whose center model has the maximum score are selected.

On Neural Network

For the proposed method, only on system model is used in the state estimation. In other words,

only one system model is selected in  the system model estimation. The value of the noise

variances of 1w  and 2w  is not the index but the real value given by  196,1 22
21

≤≤ ww σσ . The

inputs of the BP network at time k  are the previously selected system model and the likelihood of

the current measurement based on the  previously selected system model. The currently selected

model is  the last parameter and the likelihood value is the first parameter at the next scan. The

neural networks used in both simulations are  the BP network with one hidden layer with 16

neurons.

5.2 Simulation I

5.2.1 Introduction

The Objectives of the simulation I are given as follows.

l Show how to build the proposed method.

l Show the system model jump delay in DS VSIMM.

l Verify the proposed method.

In the simulation, the system model jump delay in DS VSIMM is  shown by checking the

transition history of the center system model. In order to verify the proposed method, the MSE of

the proposed method, DS VSIMM [1,5], and the βα − filter [4] are compared.
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5.2.2 Neural Network Training

The training scenario is illustrated in Figure 6. The training scenario include the circle

movements and line movement. The training information is as  follows.

l \item Number of training pairs : 60 pairs

l \item Number of the maximum iteration : 1000 times

l \item Check Point : number of weights 16 < Number of training pairs 60

As discuss in the previous chapter, the number of the parameters  in the BP neural network

should be fewer than that of training pairs.

Figure 6 The Training Trajectory in Simulation I

5.2.3 Test Scenario

The test trajectory is shown in Figure 7. In the test scenario, when the target turns, it is predicted

that maneuver happens. There are four maneuvering periods: 1) scan 11~13, 2) scan 21~23, 3)

scan 31~33 and 4) scan 41~44.
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Figure 7 The Test Trajectory in Simulation I

5.2.4 Results

The results are obtained after 50 Monte-Carlo runs.

System Model Jump Delay

Figure 8 shows the history of the selected system model of the proposed and the center system

model of the DS VSIMM methods. The system model jumps of NN-VSMM in  maneuvering

preriods are faster than those of the DS VSIMM. This  is due to the system model jump delay.

Figure 8 The System Model Jump
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Performance Comparison

In Figure 9, the mean square errors (MSE) of the proposed and the DS VSIMM methods are

compared. In a non-maneuvering period, from scan 1 to scan 10, the MSE of both methods are

similar, but in the maneuvering periods, the proposed  method is less erroneous than the DS

VSIMM. The MSE in maneuvering periods is given in the table \ref{Tableresut1MSE}. As a

result, the system model jump delay by using the proposed method is  reduced.

Figure 9 The MSE of the Proposed Method and DS VSIMM

Scan(Maneuvering periods) The Proposed DS-VSMM α-β filter

11-13

21-23

31-33

41-43

1.5791

1.6138

1.5083

1.5944

4.6258

3.7418

2.9099

2.5968

31.0747

31.1780

30.9601

31.1208

Table 1 The MSE in Simulation I

5.3 Simulation II

5.3.1 Introduction

The Objectives of the simulation II are given as follows.
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l Show the effect of the training pair.

l Compare the DS VSIMM method and the proposed methods with different training

scenarios.

The simulation focuses on the effect from the training scenario. As explained in the previous

chapter, the representative training  scenario is required. In the simulation, three training

scenarios are prepared. First scenario is not sufficient to cover complex movement. Second

scenario can covers complex movements. The last scenario is mix of the fist and the second. The

performance of the training scenarios and DS VSIMM are compared.

5.3.2 Neural Network Training

Three training scenarios are prepared- 1)Line movements, 2)Circle  movements, and 3)Line +

Circle movements. The training scenarios  are given in Table 2 and Figures  10, 11, and 12.

Line Scenario

The line scenario is the simplest. There is no change of the acceleration. The simulation model in

the equations (5.1) and (5.2) is predicted to be covered the movement in line scenario with the

small system model jump.

Circle Scenario

The circle scenario is more complex than the line scenario. Moreover, more system jump is

predicted than the line scenario.

Line+Circle Scenario

This scenario is the mixture of the line and the circle scenarios. In this simulation, this scenario is

mainly compared with the circle scenario.
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Training
Scenario

Descriptions

Line Scenario Initial position: (0,0)

Velocities : (200, 100), (-200, 100), (200, -100), (-200, -100)

Circle
Scenario

Angular velocity: π/10

Radius: 50, 100, 150, 200

Line+Circle
Scenario

Line - Initial position: (0,0)

Velocities : (200, 100), (-200, -100),

Circle - Angular velocity: 10/π , Radius: 50, 100

Table 2 Training Scenarios
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Figure 10 Training Trajectories : Line Scenario
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Figure 11 Training Trajectories : Circle Scenario
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Figure 12 Training Trajectories : Circle+Line Scenario
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5.2.3 Test Scenario

The three proposed methods with different training scenarios with the trajectories illustrated in

Figures 13, 14, 15, and 16 are used in this simulation. Three scenarios are similar to the  training

scenarios and one scenario is different.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Figure 13 Test Scenario Trajectory: Line
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Figure 14 Test Scenario Trajectory: Circle+Line
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Figure 15 Training Scenario Trajectory: Circle
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Figure 16 Training Scenario Trajectory: Untrained

5.3.4 Results

The comparison of the MSE of four methods is shown in Table 3.

Test Scenario
Train Scenario

Fiters
Line Circular Line + Circle

NNVSMM 1.0301 1.1948 1.1154
Linear

DSVSMM 1.1573 1.1469 1.1472

NNVSMM 33.8047 3.1184 2.0502
Circ le

DSVSMM 5.9898 5.9647 5.9898

NNVSMM 23.2437 6.0346 2.8477
 Line+Circle

DSVSMM 5.2321 5.2337 5.2366

NNVSMM 16.8466 1.5515 1.6559
Untrained

DSVSMM 2.5445 2.5178 2.5463

Table 3 The MSE of the test trajectories
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Line Test Scenario

The MSE of VSIMM and all proposed methods shows similar performance. Especially, the

proposed method with only circle  train scenario does not give the erroneous estimation.

Circle Test Scenario

The proposed method with the line train scenario is significantly  erroneous. Other proposed

methods shows better performance than DS VSIMM. Moreover, the proposed method with the

line+circle scenario shows the best performance. The detail comparison is in Figures 17 and 18.

Line+Cicle Test Scenario

The DS VSIMM shows better performance than the proposed method  with the circle train

scenario. As a result, the selection of training scenario is important.

Unknown Test Scenario

The proposed methods with the circle scenario and the line+circle  scenario show better

performance than DS VSIMM.

From the result, it is predicted that

l the training scenario should be cover various target movements, and

l for untrained trajectory, the proposed algorithm shows  better performance than DS

VSIMM.
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Figure 17 The Result of Circle only Traing

Figure 18 The Result of Circle + Line Train

5.4 Discussions
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In Simulation I, the proposed method has less system model jump  delay than the DS VSIMM.

This is directly connected to the  estimation error reduction. In Simulation II, the effect of

training scenario is analyzed. The training scenario with only one moving pattern is not suitable

for covering the various moving patterns. The Circle + Line training scenario is better than the

Circle scenario. Moreover, it is shown that the untrained moving  patterns can be dealt with

neural network- the MSE of DS VSIMM is  the second largest.

6. Conclusion

In this project, a new system model estimation method using neural network has been proposed.

Firstly it has been shown that the Markov jump process causes system model jump delay. Instead

of Markov jump process, a neural network in system model estimation is employed for reducing

the system model jump delay. In  representative simulations, it is shown that the reduction of

system model delay in the proposed method is achieved. Moreover, the effect of the neural

network training scenarios for generality is analyzed. It also is shown that the untrained moving

patterns can be dealt with neural network.
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